Publications

« First ‹ Previous 1 3 4 5 6 Next › Last »

Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer

Chai C, Commun Biol – 2024

Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, Bak RO, Li H, Lin L, Wang F, Luo Y.

A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is crucial for enhancing our understanding of the disease, as well as for the development of better diagnoses and treatments. Here, over half a million single-cell transcriptome data were collected from 84 OC patients across all clinical stages. Through integrative analysis, we identified heterogeneous epithelial-immune-stromal cellular compartments and their interactions in the OC microenvironment. The epithelial cells displayed clinical subtype features with functional variance. A significant increase in distinct T cell subtypes was identified including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs (myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor progression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types. Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) proliferation, and increased T cell proliferation when co-cultured. These findings shed light on the cellular compartments and functional aspects of OC, providing insights into the molecular mechanisms underlying stage IC2 and potential therapeutic strategies for OC.

Commun Biol. 2024 Jan 26;7(1):131. doi: https://doi.org/10.1038/s42003-024-05826-1.
PMID: 38278958 | Doi: https://doi.org/10.1038/s42003-024-05826-1

Safety and efficacy studies of CRISPR-Cas9 treatment of sickle cell disease highlights disease-specific responses

Frati G, Mol Ther – 2024

Frati G, Brusson M, Sartre G, Mlayah B, Felix T, Chalumeau A, Antoniou P, Hardouin G, Concordet JP, Romano O, Turchiano G, Miccio A.

Fetal hemoglobin (HbF) reactivation expression through CRISPR-Cas9 is a promising strategy for the treatment of sickle cell disease (SCD). Here, we describe a genome editing strategy leading to reactivation of HbF expression by targeting the binding sites (BSs) for the lymphoma-related factor (LRF) repressor in the γ-globin promoters. CRISPR-Cas9 treatment in healthy donor (HD) and patient-derived HSPCs resulted in a high frequency of LRF BS disruption and potent HbF synthesis in their erythroid progeny. LRF BS disruption did not impair HSPC engraftment and differentiation but was more efficient in SCD than in HD cells. However, SCD HSPCs showed a reduced engraftment and a myeloid bias compared with HD cells. We detected off-target activity and chromosomal rearrangements, particularly in SCD samples (likely because of the higher overall editing efficiency) but did not impact the target gene expression and HSPC engraftment and differentiation. Transcriptomic analyses showed that the editing procedure results in the up-regulation of genes involved in DNA damage and inflammatory responses, which was more evident in SCD HSPCs. This study provides evidence of efficacy and safety for an editing strategy based on HbF reactivation and highlights the need of performing safety studies in clinically relevant conditions, i.e., in patient-derived HSPCs.

Mol Ther. 2024 Dec 4;32(12):4337-4352. doi: https://doi.org/10.1016/j.ymthe.2024.07.015. Epub 2024 Jul 22.
PMID: 39044427 | Doi: https://doi.org/10.1016/j.ymthe.2024.07.015

Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL

Aparicio-Pérez C, Front Immunol – 2023

Aparicio-Pérez C, Carmona M, Benabdellah K, Herrera C.

The use of chimeric antigen receptor (CAR) T lymphocytes in the treatment of refractory or relapsed (R/R) B cell acute lymphoblastic leukemia (B-ALL) has meant a radical change in the prognosis of these patients, whose chances of survival with conventional treatment are very low. The current probability of event-free survival by R/R B-ALL patients treated using anti-CD 19 CART cell therapy is as high as 50-60% at 1.5 years, which is a very important advance for this group of very ill patients. Although most patients (70 to 94%) achieve complete remission (CR), the main problem continues to be relapse of the disease. Most relapses, both in clinical trials and real-world evidence, are due to failure of CAR-T cell expansion or limited CAR-T persistence. However, despite the adequate functioning of infused CART lymphocytes, the tumor cells of an important group of patients manage to evade CAR-T attack, resulting in a CD 19-negative relapse. Several mechanisms have been described that may be able to produce the escape of leukemic cells, such as acquired mutations and alternative splicing of the CD19 antigen, CD19 epitope loss or masking, leukemia lineage switching, and trogocytosis. In the present review, we comprehensively analyze the leukemic cell escape mechanisms, the incidence of CD19-negative relapse reported in clinical trials and real-world evidence (outside clinical trials), and provide an update on the main lines of current research into the prevention of leukemia evasion.

Front Immunol. 2023 Apr 14;14:1165870. doi: https://doi.org/10.3389/fimmu.2023.1165870. eCollection 2023.
PMID: 37122700 | Doi: https://doi.org/10.3389/fimmu.2023.1165870

The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension

Șerban M, Int J Mol Sci – 2025

Șerban M, Toader C, Covache-Busuioc RA.

Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is not simply an elevated ICP process but a complex process of molecular dysregulation, glymphatic dysfunction, and neurovascular insufficiency. Our aim in this paper is to provide a complete synthesis of all the new thinking that is occurring in this space, primarily on the intersection of glymphatic dysfunction and cerebral vein physiology. The aspiration is to review how glymphatic dysfunction, largely secondary to aquaporin-4 (AQP4) dysfunction, can lead to delayed cerebrospinal fluid (CSF) clearance and thus the accumulation of extravascular fluid resulting in elevated ICP. A range of other factors such as oxidative stress, endothelin-1, and neuroinflammation seem to significantly impair cerebral autoregulation, making ICH challenging to manage. Combining recent studies, we intend to provide a revised conceptualization of ICH that recognizes the nuance and complexity of ICH that is understated by previous models. We wish to also address novel diagnostics aimed at better capturing the dynamic nature of ICH. Recent advances in non-invasive imaging (i.e., 4D flow MRI and dynamic contrast-enhanced MRI; DCE-MRI) allow for better visualization of dynamic changes to the glymphatic and cerebral blood flow (CBF) system. Finally, wearable ICP monitors and AI-assisted diagnostics will create opportunities for these continuous and real-time assessments, especially in limited resource settings. Our goal is to provide examples of opportunities that exist that might augment early recognition and improve personalized care while ensuring we realize practical challenges and limitations. We also consider what may be therapeutically possible now and in the future. Therapeutic opportunities discussed include CRISPR-based gene editing aimed at restoring AQP4 function, nano-robotics aimed at drug targeting, and bioelectronic devices purposed for ICP modulation. Certainly, these proposals are innovative in nature but will require ethically responsible confirmation of long-term safety and availability, particularly to low- and middle-income countries (LMICs), where the burdens of secondary ICH remain preeminent. Throughout the review, we will be restrained to a balanced pursuit of innovative ideas and ethical considerations to attain global health equity. It is not our intent to provide unequivocal answers, but instead to encourage informed discussions at the intersections of research, clinical practice, and the public health field. We hope this review may stimulate further discussion about ICH and highlight research opportunities to conduct translational research in modern neuroscience with real, approachable, and patient-centered care.

Int J Mol Sci. 2025 Jul 25;26(15):7223. doi: https://doi.org/10.3390/ijms26157223.
PMID: 40806356 | Doi: https://doi.org/10.3390/ijms26157223

Generating universal anti-CD19 CAR T cells with a defined memory phenotype by CRISPR/Cas9 editing and safety evaluation of the transcriptome

Pavlovic K, Front Immunol – 2024

Pavlovic K, Carmona-Luque M, Corsi GI, Maldonado-Pérez N, Molina-Estevez FJ, Peralbo-Santaella E, Cortijo-Gutiérrez M, Justicia-Lirio P, Tristán-Manzano M, Ronco-Díaz V, Ballesteros-Ribelles A, Millán-López A, Heredia-Velázquez P, Fuster-García C, Cathomen T, Seemann SE, Gorodkin J, Martin F, Herrera C, Benabdellah K.

INTRODUCTION: Chimeric antigen receptor-expressing T cells (CAR T cells) have revolutionized cancer treatment, particularly in B cell malignancies. However, the use of autologous T cells for CAR T therapy presents several limitations, including high costs, variable efficacy, and adverse effects linked to cell phenotype. METHODS: To overcome these challenges, we developed a strategy to generate universal and safe anti-CD19 CAR T cells with a defined memory phenotype. Our approach utilizes CRISPR/Cas9 technology to target and eliminate the B2M and TRAC genes, reducing graft-versus-host and host-versus-graft responses. Additionally, we selected less differentiated T cells to improve the stability and persistence of the universal CAR T cells. The safety of this method was assessed using our CRISPRroots transcriptome analysis pipeline, which ensures successful gene knockout and the absence of unintended off-target effects on gene expression or transcriptome sequence. RESULTS: In vitro experiments demonstrated the successful generation of functional universal CAR T cells. These cells exhibited potent lytic activity against tumor cells and a reduced cytokine secretion profile. The CRISPRroots analysis confirmed effective gene knockout and no unintended off-target effects, validating it as a pioneering tool for on/off-target and transcriptome analysis in genome editing experiments. DISCUSSION: Our findings establish a robust pipeline for manufacturing safe, universal CAR T cells with a favorable memory phenotype. This approach has the potential to address the current limitations of autologous CAR T cell therapy, offering a more stable and persistent treatment option with reduced adverse effects. The use of CRISPRroots enhances the reliability and safety of gene editing in the development of CAR T cell therapies. CONCLUSION: We have developed a potent and reliable method for producing universal CAR T cells with a defined memory phenotype, demonstrating both efficacy and safety in vitro. This innovative approach could significantly improve the therapeutic landscape for patients with B cell malignancies.

Front Immunol. 2024 May 29;15:1401683. doi: https://doi.org/10.3389/fimmu.2024.1401683. eCollection 2024.
PMID: 38868778 | Doi: https://doi.org/10.3389/fimmu.2024.1401683

« First ‹ Previous 1 3 4 5 6 Next › Last »